
Transient Sorption by !Z'wo-Component Laminate Slabs in a 
Semiinfinite Bath 

INTRODUCTION 

Equations describing transient diffusion of permeate across a binary laminate slab separating 
finite and semiinfinite baths and the transient sorption by a two-component laminate slab in a finite 
bath have been reported.'-3 Equations have also been reported describing transient sorption in 
two-component laminate slabs with constant surface concentrations under certain restricted initial 
conditions, e.g., a semiinfinite lamina, and finite laminae with an infinite diffusion coefficient in 
the inner lamina or with a constant concentration gradient in the outer  lamina.'^^ In this paper 
sorption equations for four systems with potential for modeling membrane applications and de- 
scribing experiments used for evaluating membranes are presented and their characteristics discussed. 
Simple equations obtained a t  large t are used to compare transient sorption behavior in this extensive 
time interval occurring in laminates having laminae with different diffusion and distribution coef- 
ficients. 

PROCEDURE, EQUATIONS, AND SYSTEMS 
The systems are plane-sheet membranes composed of two laminae, lamina A of thickness a and 

lamina B of thickness b, with lamina B attached to an impermeable substrate. The permeate con- 
centration in the semiinfinite bath is co, a constant. The concentrations in each lamina prior to 
exposure to co are uniform; C i  in lamina A and Cb in lamina B. Equilibrium is maintained a t  the 
phase interfaces unless otherwise specified; K A  = CA/C at x = -a and K = CJCB at x = 0. The 
diffusion coefficients in the laminae, D A  and D B ,  are constant. 

Differential equations describing the transport are 

Application of the Laplace transform method6 provides solutions for the systems N = I, 11, 111, 
IV: - 

Cg(x,t) = c i  + ( c i  - ci) Af(x) exp[-D~(R;)~(t /b~)]  (2) 

C[(x,t) = c i  + (cb - cg) B t ( x )  exp[-o~(R:)~(t/b~)] (3) 

n- 1 

0 -1  

where the R N  are roots of an auxiliary equation determined by the boundary conditions. 

given by 
The reduced change of permeate mass in the membrane F N ( t )  = [ ( M ( t )  - M o ) / ( M i  - M O ) ] ~  is 

- 
F N ( t )  = zf exp[-D~(R;)~(t /b~)]  (4) 

n- 1 

where Mo = C i a  + Cgb, M i  = C i a  + Mbb, and M ( t )  is the mass of permeate in the slab at time t. 
At large t only the first term in eq. (4) is significant and the equation becomes simple exponential, 
such that 

(5) In (FN), = In Z r  - DB(Rrl2(t/b2) 

or 

In(FN), = [ - D ~ ( R r ) ~ / b ~ ] ( t  - ON) (6) 

when O N  is the time lag defined by 
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the intercept of the limiting line of a graph of In (FN), versus t on the t axis. 
The systems examined are (I) two laminae initially in equilibrium with permeate a t  a concentration 

differing from that in the bath, Cl,  # C: and Cg # Ci; (11) lamina A initially in equilibrium with 
the bath, C, = Ci,, and lamina B initially in equilibrium with permeate a t  a concentration differing 
from that in the bath, Ce # C& (111) system I with a contact barrier between the two laminae; and 
(IV) system I with the impermeable substrate removed so permeate crosses the interfaces a t  x = 
-a and x = b. Systems composed of free symmetrical ABA laminate slabs with identical boundary 
conditions are equivalent to systems 1-111. 

System I 

The boundary conditions for I are 

($ )x -b  = 0, t Z 0; c & x , O )  = Cl,, 0 d x d b 

The coefficients for C(x, t )  are 

2 sin ( 2 R f , )  sin [ (Rf ,X/6) (1  + x /a ) ]  
R',[(X/6)  sin (2R',) + sin (2R',X/6)] 

A!,(x) = 

where X = a/b ,  6* = DA/DB. and the R f ,  are the positive roots of 

tan R tan (RX/6)  - 6K = 0 

The coefficients for the reduced mass equation F 1 ( t )  are 

26K sin (2R!,) 
(1 + AK)(R' , )2[ (X/6)  sin ( 2 R f , )  + sin (2R!,X/6)]  

zf, = 

System I1 

The boundary conditions for I1 are 

The coefficients for C(x, t )  are 

A!, ' (x)  = cos (R!,'A/6) A!,(x) 

B!,'(x) = cos (R!!X/6) B:(x) 

Z!,' = (1 + AK) cos (R','X/G)Z'. 

(19)  

(20)  

where R f ,  = R!,'. The coefficients for F"(t)  are 

(21)  

At large t the slopes of ln ( F N ) .  versus t are identical for systems I and I1 but shifted by In [ ( l  + 
AK) cos (R','X/a)]. 
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System I11 

The boundary conditions for I11 are 

CF(-a,t)  = Cl, t LO; c!~!'(x,o) = ci, --a < x < o 

where h = H/DA is a measure of the contact barrier. For h - the barrier disappears and system 
I11 reduces to system I. Equilibrium exists a t  the interface x = 0 before the experiment, K = Ci/C&, 
and at  its completion K = Ci/Cg, but not during the transient phase of the sorption. 

The coefficients for C(x,t)  are 

A',"(x) = 2(sin R'," sin (R',"Xr/G-a) + [6K cos Rft' - (Rft'/hsb) sin R',,] cos (Rf t 'h /Ga)} /L ,  (25) 

(26) Bft'(x) = 26 cos [Rft'(l- x/b)]/L, 
where 

L, = Rft1([(l/h6b) + (X/6) + 6K] sin R'," cos (R',"X/6) + (1 + AK) cos R'," sin (Rft'X/6) 
- (R?X/hS2) sin R',, sin (R',"X/6) + (Rft1/h6) cos Rt' cos (Rft'X/6)} (27) 

where the Rft' are the positive roots of 

tan R[(R/hbb) + tan (RX/6)] - 6K = 0 (28) 

The coefficients for P ( t )  are 

26K sin ( 2 R 3  
(1 + AK) (Rff')2{(X/$) sin (2R,) + sin (2RnX/6) + (l/h6b) cos2 (RnX/6)[sin (2R,) + 2Rn]} 

z'," = 

(29) 

The coefficients for C(x,t)  are 
4 sin Ry[cos (RyX/h) - cos RY] sin [(R?X/S)(l + x/-a)] 

R','[sin (ZR','X/S) - (A/& sin (wl',v)] 
A Y ( x )  = (33) 

4 sin R',,[cos (RYX/6) - COB R',,] sin [(R',,X/S)(l - x / b ) ]  
RY [sin (2R',"X/6) - ( X b )  sin (2R',')] B Y ( x )  = (34) 

where the R p  are the positive roots of 

6KtanR+tan(RX/6)=0 

The coefficients for P ( t )  are 

(35) 

DISCUSS J 0 N 
The value of these diffusion equations lies primarily in the interpretation or prediction of transient 

sorption behavior in a two-component laminate membrane in terms of the behavior of the each 
lamina. However, if the diffusion and partition coefficients for a permeate in one lamina are known, 
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TABLE I 
Ratio of D to DB for Systems I and I1 with X = 0.1 

D/DB D/DB 
6 K i eq. (38) eq. (39) RI 11 

1.0 1.0 1.42800 1.000 0.826 
1.0 0.2 1.07571 0.567 0.469 
1.0 5.0 1.53976 1.163 0.961 
0.2 1.0 0.58569 0.168 0.139 
5.0 1.0 1.56454 1.200 0.992 
5.0 0.2 1.54000 1.163 0.961 
0.2 5.0 1.04720 0.538 0.444 

these parameters can be determined for the second lamina from a sorption experiment using a 
laminate of the two. This procedure could be desirable if one lamina required the support of the 
second for mechanical integrity or if the outer lamina were established only in the presence of the 
inner one, e.g., a stagnant lamina of the medium in which a membrane consisting only of the inner 
lamina was immersed. This procedure is tedious. For example, if DB and K B  are known for a 
sorption system of type I, DA and K B  can be determined from a sorption experiment using a laminate. 
The slope of In (F1)e versus t yields R: by eq. (5). KA is calculated by M o  = (KAQ + Kbb)co. Then 
by eq. (13) 6 can be determined by graphic or iterative procedures and DA calculated. 

A comparison of the limiting behavior at large t of F N ( t )  for the laminate systems N = 1,II and 
F ( t )  for a homogeneous membrane composed of B and of thickness I ,  where 1 = a + b or 1 = b, is in- 
structive. The experimental diffusion coefficient D obtained from a graph of In F( t )  versus t at large 
t for a homogeneous membrane with constant surface concentrations is calculated from the slope 
of the curve by" 

D = -(slope)(21/~)~ (37) 

For the laminate systems the D calculated in this manner is related to DB by 

D = D J ~  [2Rr(1 + X ) / T ] '  (38) 

when 1 = a + b, and 

D = DB(~R?/T)' (39) 

when 1 = b. Equation (38) shows that a surface reaction producing an outer lamina A with 6 and 
K values far from unity can lead to poor values for DB if the system is analyzed as if it were homo- 
geneous. Equation (39) is most applicable in demonstrating the effect of a stagnant lamina. A few 
examples of the effect of an outer lamina with X = 0.1 are presented in Table I. The effect of a 
stagnant lamina A on the sorption behavior of membrane B is small if 6 and K are much greater than 
unity. 
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